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Genetic Structures in Finite, Open-pollinated Plant Populations:
A Model and its Application to Seed Orchards

Hans~Rolf Gregorius and Gerhard Miiller
Lehrstuhl fiir Forstgenetik und Forstpflanzenziichtung der Universitit Gottingen (BRD)

Summary. A model has been constructed to investigate the consequences of the rate of self-fertilization, pollen-
dispersal, population-size, and number of clones on the genetic structure of finite seed plant populations. Deriva~
tions have been performed for two different cases: ’
A) Parental genetic structure explicitly given: inferences for the expected genetic structure of the resulting seed
population;

B) Extension of case A) to several non-overlapping generations.

If random cross-fertilization is assumed for case A) the genetic composition does not change and the genetic
distance between the corresponding Hardy-~Weinberg-structure and the expected offspring~structure is 0 if the rate
of self-fertilization is equal to 4 (N = population-size) ; any deviation from # causes an increase in genetic dis-
tance.

In case B) the expected genetic structures have been derived for all generations and it was possible to establish
a comparatively simple dependence on the coefficient of inbreeding. In addition the variance of the allele-frequency
has been presented. All the above influential components can be summarized by a single quantity, called M. After
proving that <+ can be conceived as the effective population-size, all the results obtained could be presented de-
pending on this effective size and the average rate of self-fertilization only.

Applying the findings of the model to the situation realized approximately in a seed-orchard, the following
statements can be made:

Case A) Again assuming random cross-fertilization, a deviation of the parental population from the corresponding
Hardy-Weinberg-proportions can, with increasing rate of self-fertilization, be exceeded by the respective devia-
tion of the seed population. Case B) The influence of pollen dispersal on the effective population size has been in-
vestigated, assuming no variation of the individual rates of self-fertilization, pollen and seed production within the
population. Only extremely small differences between effective and actual population size were obtained, which in-
dicates that the influence of pollen dispersal is of minor importance in this case. For different rates of self-ferti-
lization, significant differences in the increments per generation for the coefficients of inbreeding, as well as the
frequency of homozygotes, were obtained for the first generation only. Decreasing number of clones influences the
rate of self-fertilization and the effective population size simultaneously by increasing the first and decreasing the
latter. This istransferredtothe coefficient of inbreeding, frequency of thehomozygotes and the variance ofthe allele
frequency by an increase of increments for all generations.

Introduction ability and restrains separate generations from genetic
exchange. Situations like these are commonly met in
Any kind of breeding system may be regarded as acting © & Y

. . . . forest tree breeding when establishing seed orchards.
upon the genetic variability contained in a real or hypo-

thetical base population, where the pattern of variability
is completely determined by the set of corresponding ge-
notypic frequencies - denoted as the genetic structure -
which in turn fix the set of gene frequencies - denoted as
the genetic composition. This variability may be reduced
where the predominating components of the breeding
system are, for example special kinds of selecting or
drift in small populations, which at the extreme can
cause a high amount of inbreeding and a loss of genes
originally present in the base population. A phenomenon
of this kind constitutes a risk, the importance of which
depends heavily on the kind of organism considered. If,
for instance, plant species are considered which occupy
very heterogeneous environments or have long generation

cycles, reduced genetic variability will imply low adapt~

The present paper treats especially the consequences
implied for their genetic structures by characteristic
components of the mating system found in seed orchards.
The emphasis will be put on the role played by the rate of
self-fertilization, mode and range of pollen dispersal,
population size and number of clones. This set of para-
meters determines to a great extent the amount of in-
breeding and kinship and deviations from random-mating.

Of course there are many other factors which influ-
ence the breeding system displayed in seed orchards,
such as variation in flowering times, seed and pollen
production. But too little is known about the genetic
control of components like these, so that reasonable
assumptions concerning implications for the genstic

structure can not be made.
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An investigation of genetic structures in seed or-
chards can be performed from two different points of
view:

A) Representations refer exclusively to the expected
genetic structure within the seed production of a given
seed orchard. The aim is to state how far the parental
structure is reflected by the seed population.

B) Assuming that populations derived from the seed
production of a seed orchard are usedto establish future
generations, considerations concerning the risk caused
by reduction of genetic variability obtain increasing im-
portance. To demonstrate this expected risk, investiga-
tions are extended to an arbitrary number of genera-

tions.

1. Theoretical derivations

1.1. Preliminary remark

As already mentioned, an investigation of genotype-fre-
quencies (genetic structure) and gene-frequencies (ge-
netic composition) infinite populations canbebasedon
two different prerequisites: firstly, one maybe inter-
estedin finding the expected genetic structure ofthe pro-
geny of a parental population, whose members are explic-
itly described by their genotypes, thus considering merely
the realized genetic structures of the parental genera-
tion and not their probabilities of occurrence; secondly,
no exact knowledge about the actual genetic structure of
the parental population is available, and therefore some
assumptions concerning the probability distribution ofthis
structure - which then has to be regarded as a random
variable - have to be made.

Obviously, the expected genetic structure of the pro-
geny in the latter case is obtained from the first case by
taking the expectation with respect to the probability-
distribution of the parental structure.

A clear distinction between these two situations is ne-
cessary when applying theoretically obtained results to
actually existing populations, especially seed-plant po-
pulations, which are able to produce a comparatively
large number of offspring in the form of seeds. Such a
seed population may be accepted as representing suffi-
ciently well the expected genetic structure of the prog-
eny of a specified set of parents. It will be very interest-
ing to find the degree of concordance between the genetic
structure and the composition of the parental and off-

spring generations.
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A comparison of this kind can not be performed if the
information about the genetic structure of the parental
population is not more explicitly given, but rather refers
to the expected structure. In this case all the genotype-
and gene-frequencies of the two generations can not be
regarded as actually existing genetic structures in the
sense mentioned above; they merely denote the prob-
ability of a single genotype or gene occurring inthe po-
pulation. The same concept underlies the definition of
the coefficient of inbreeding and kinship, both of which
therefore have to be treated within the scope of this con-
cept. One of the aims of this paper shall be to demon-
strate the relationship between the coefficients of in-
breeding and kinship and the genotypic probability struc-
ture for the model applied.

1.2. The model

Populations are assumed to have finite size N and con-
sist of monoecious, diploid seed-plants. The individuals
are distributed over their habitat according to a specified
pattern, so that each plant can be identified by its loca-
tion. The following conditions shall be realized approxi-
mately: no immigration, mutation, gametic and zygotic
selection; no genetically caused variation of the amounts
of pollen- and seed-production, of the types of pollen-
dispersal and of the rates of self-fertilization among the
plants. The overall pollen production is sufficientlylarge
to pollinate all eggs present in the population. All plants
flower at the same time.

Where several generations are considered, these are
assumedto be discrete and non-overlapping, and each off-
spring generation is obtained by taking a random sample
from the overall seed-production of the parental genera-
tion; the assignment of the individuals of this sample to
their locations is at random.

Because we intend to describe the influence of thetype
of pollen-dispersal and the rate of self-fertilization on the
genetic structure, respectively onthe average coefficient
of inbreeding and kinship of a population, all the follow-
ing derivations assume that the probabilities of mating
for all pairs of individuals are given as functions of their
locations, and that the seed-production of each (mother-)
plant can be split into one part resulting from self-ferti-
lization and the remaining part resulting from cross-
fertilization.

One autosomal gene locus with an arbitrary number
of alleles Ai is considered.
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Case A) Genetic structure of the parental population ex-

plicitly given. This situation maybe described by identi-
fying each individual by the place, say k, itis located at

and the genotype AiAj it has. Naturally k = 1,2 ...,N.
To allow exact derivations of the results we shall apply

Kronecker's symbol:

8. . ::{
1)

(" 1 if the genotype of an individual located at

0ifi#f]j

and
1ifi=j .

place k is A A,
ii

% if the genotype of an individual located at
G. 1=

9 place k is AiAj s

0 if the genotype of an individual located at

\_ place k is A].Al, jELAL

ObviouslyZGilk =1 forall k=1,...,N.
i

Further notations:
p(i|k) =:  probability that a seed randomly drawn from
the cross-fertilized part of the seed-pro-
duction of a plant located at place k contains
a pollen which has been produced by a plant
located at place i.

N
Obviously p(k|k) = 0 and '21 p(ilk) = 1 for
i=
all k=1,...,N,
rate of self-fertilization within the seed-pro-
duction of a plant located at place k.
probability that a seed randomly drawn from
the overall seed-production of the population

originates from a plant located at place k.
)

s, =1,
k=1 k

frequency of the allel Ai in the parental po-
pulation.

frequency of the genotype AiAj in the paren-
tal population.

:= probability that a seed randomly drawnfrom
the overall seed-production of the popula-
tion has genotype AiAj'

1 l . 1
Pii +3 : Pij'
] .
i#i
With these notations the realized genetic structurein

relation to composition of the parental population is giv-
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en by the set of the Pi'] 's and the pi' ‘s, respectively,
while the expected gensetic structure and composition of
the seed-population is given by the set of probabilities,

PI
ii

j and pi', respectively.

Clearly
N
w1 .
Pl TN Z S |k
k=1
. N
P;J.:N-Z S i#j,
k=1
and
N
-2, 21
Pii= N Z Gilk(G1|k 2)
k=1

Considering that Gi may be regarded as the prob-

[k
ability that an allele randomly drawn from the genotype
of an individual located at place k is Ai’ the probabili-

ties Pi’j can be computed in a straightforward way:

N
pij = (Z—Sij). Sy 9 Gilk Gjlk +
k=1
N N
1
*g " Zsk(l—qk) * Gk Zp(llk) “Gint
k=1 1=1
N N
1. . ]
+g Zskh-qk) G]!k Zp(l'k) Gil1 ;
k:l 1=1
(1a)
and from this
. N
Pi =3 Zsk(1+qk) “Cilk*
k=1
N N
1
vz Y s li-g) - YAl - Gy (1b)
k:l 1=1

This general representation is suitable for comput-
ing a great variety of different actual situations, but it
is too difficult to survey if one intends to make apparent
specific properties of the genetic structure relate to
composition, which are due to certain influences. This
is because, in the general case, the representation de-
pends heavily on the locatiohs of the genotypes, a com-
plication which can be cancelled by assuming S TN
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QG =d for all k and crossfertilization to occur at ran-

dom, i.e. p(1]k) = N1—1 for all 1/k. From that
= ||2 - N l 1"t tr N

Py=pi"(1-q) * o7+ 5 (Y *pi)(1 - (1-9) * 2 1)

(2a)
] ARR SR} " N

PiJ 2p} P (1-q) - +—P1J - (1-q) - w1 ) for i#]
(2b)

and p; "= pi' as can be proved easily, i.e. the genetic

composition does not change.

Here, especially, the question arises as to which
conditions, in addition to random cross-fertilization,
have to be fulfilled so that the expected genetic struc-
ture of the seed population is equal to the corresponding
Hardy-Weinberg-proportions. A solution to this problem
can be given by applying the genetic distance d between
the two structures (in a version stated by Gregorius
1974):

d:%- DIPy - b |+Z|P —-prl . If we con-
i

1<]

2

sider that always —-(P” >0, d can be writ-

plll) - p|i|
ten as

-l (e s il (3)

11 I ||2 Z 1t l 11
. Z( (P« o) -0y}« ) l2pyey - 3Pyl | -
i i,]
i<j
Thus d = 0 if the seed population attains Har-
dy-Weinberg-proportions, which is equivalent to

1-_ i 1y o ||2_ : Thoatl l =
5 (Pi'i +P} ) p;'"=0 for all i and Zpipj 2Pij =0
for all i #j. Thus d = 0 if and only if q = N (complete

panmixia) or all members of the parental population

have the same genotype.

Therefore absence of self-fertilization (q=0) can not
be treated as equivalent to dioecism ~ which would lead
to Hardy-Weinberg-proportions - as is commonly done
in the technical literature.

Furthermore for large population-size N, i.e.

NI-\-_I—l- ~ 1, the above equations reduce to a well known
result for partial self-fertilization (see e.g. Crow and
Kimura, 1970, p.93).
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Case B) The expected genetic structures. As mentioned

before, this problem can be solved by taking the expec-
tation of equation (1a) with respect to the probability-
distribution of the genetic structure ofthe parental popu-
lation, in which case the quantities Cri lk have to be re-
garded as random variables. But because this would re-
quire alot of preliminary explanations which rather com-
plicate the derivations, we decided to choose another
approach, which of course leads to the same results.
Considerations will now be extended over several gene-
rations according to the assumptions at the beginning.

The following notations will be applied:

q; = average rate of self-fertilization within the
seed~-production of generation t.

Mt =: probability that two alleles randomly taken
from two distinct individuals in generation t
are derived from the same individual in ge~
neration t-1.

ng =: probability that an individual randomly taken
from generation t has genotype AiAj'

Rti:j =: probability that two alleles randomly taken
from two distinct individuals in generation
t are A, and A..

1 3

ft = average coefficient of inbreeding in gener-
ation t.

9y =: average coefficient of kinship in generation t.

¢ oopt L 1.Ypt oL 1LY R

P, =: P..+2 Zpij’ ri“'Rii+2 Rij'

i i
i1 i
With the help of the previously defired quantities, we
obtain
N N
1
= Z 5,q and M =7 - Z (1+qk)sk+
k=1 k=1
N
+ Z * (1-q)) + p (k]1)
k=1

where M is the discrete version of the continuous re-
presentation given by Gregorius (1975).

The recurrence relations for the quantities jo can
be obtained immediately if we take into consideration
that two alleles from two distinct individuals in genera-
tion t, which are derived from the same individual in
1 (Pt 1, pti:—l) to

generation t-1, have probability 2

—P..
11

be both Ai and the probability 5

to be Ai é.nd A].:
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to_1 t-1 =1 t-1
Ry =M, (PiT+ p} ) + (1-M)RY] (4a)

t 1y pt-1 _ t-1 s 4b

Rij=gMP{j (1 Mt)Rij for i#j (4b)
The relationship between the expected genetic struc-

tures of two successive generations t-1 and t can be
derived by distinguishing between three different possi-
bilities for the formation of an offspring's genotype:
firstly, it may be produced by self-fertilization and thus
has probability %(P:;l + pii;_l) to be AiAi and probabi-
lity % Pii;j_l to be AiAJ.; secondly, it may be producedby
cross-fertilization and the two parental alleles are de-

rivedfrom the same grandparent, in which casetheyhave

probability % (P:; + pg_z) to be both A, and probabili-
ty %PL._Z to be Ai and A'j; thirdly, it may be produced

by cross-fertilization and the two parental alleles are
derived from two distinct grandparents, in which case
they have probability Rii;j_z to be A, and Aj (i#j and

izj). In all

t 1= t-1 t-1) 1= )
Pii‘iqt-1(Pii +py ) g (1-gp_y)

-2 _t-2 - t-2
X Mt-—l(Pii + Py ) + (1-q,_1)(1-M_ )Ry
(5a)
t 1— t-1 1., =
-1 . =(1- X
Pii=2%.4 " Fij * z (1-q;_4)
. - -2 i
xM. .+ P, (1-g )(1-M )RY"2 for i,
t-1 ij t-1 t-1""71j
(5b)
and from this
t t-1 t-1
T = Mt- p; + (1-Mt)ri (6)
t t-1 — —
P =Pyt Qg+ (1-qy_4) X
L t-2 — t-2
XM gty (e ) (1-My )y (7)

Because these results hold for all t, it is possible
to insert equation (4a) into (5a), (4b) into (5b) and (6)

into (7). From this we obtain

t-1

£ 1- -1 t-1 -
Pii =294 (Pii Py ) + (1-q;_4)Ry (8a)
£ 1= L ot-1 t-1
Pii=2%-1 " Py + (1-qp_¢)Ry; (8b)
- t-1 - t-1
pj = Qg Py o+ (1-q_g)ry (9)

In most cases for the initial generation (t=0) the con-

dition p? = r?:: p; is fulfilled, which in turn implies
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t_ b
p; =T/ =P for all t,

i.e. the expected genetic composition does not change in
the course of the generations. This condition is realized
if, for example, the initial population is of hypothetical-
1y infinite size. As can be taken from equations (4) and

(8), M, =at—1 leads to P'i:j =Rt for all i, j, which, re-

1]

calling the definition of Rti. , is equivalent to the corre-

sponding results obtained for complete panmixia (seee.g.

Li, 1963, p.209). On the other hand at—i = 0 implies

pt - Rrit
1] 1]

findings for random-mating monoecious populations in

for all i, j which reflects the well-known

the absence of self-fertilization and for random-mating
dioecious populations (see e.g. Jacquard, 1974, p. 180).
These statements are by no means trivial since they also
cover cases where random union of gametes, because of
limited pollen dispersal, can not be actually verified.

The relationship between the results stated in equa-
tions (4) and (8) andthe average coefficients of inbreed-
ing and kinship can be established as follows:

For the present situation we have the recurrence re-
lations (Gregorius 1975):

1= =
£, = eq_1(1+ft_1) - (1'qt-1)°*°t-1 and (10a)

_1
vy= 5 M, (14, ) + (1-M)o,_4 (10b)

If for the initial generation (t=0) we assume
= I‘?
t, it can be shown easily that the following statement

satisfies equations (4a), (4b), (8a) and (8b):

o = o - t_
fo =9, = 0 and p; =P;» such that P =P; for all

t . 2 )
Pl=p "1 +p; (l—ft) + at(Pii p; ) (11a)
t "
Pij = Zpipj (l'ft) + a (Pij - Zpipj) for i#j (11b)
RY = p. + g, + p2(1-0,) + b, (P - p2) (12a)
i = Py Pt PV T t \Tii T Py
t = - - 1 1
Rij = Zpipj (1 o) + b, (Pij Zpipj) for i#] (12b)

where the Pij 's denote the genetic structure of the ini-

tial population, and the quantities 3., bt are determined

by the recurrence relations

_1- . =
8y =5 dp.q " Byq + (1-qy_4) by (13a)

“Im .
b=5M-a ,+ (1—Mt)bt_1 (13b)

with the initial conditions a = 1 and bo =0.
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Where the genetic structure of the initial population
agrees with the Hardy-Weinberg-proportions, equations
(11) reduce to Wright's (1922) well-known formulae,
while, disregarding the initial structure, for Et = 0 for
all t and thus a, = b,_, equations (11) and (12) coin-
cide with the results given by Jacquard (1974, p.182).
Furthermore, the above representations demonstrate
clearly which aspects of the expected genetic structure
(concerning the P's and R's) are directly influenced
by the coefficient of inbreeding or by the coefficient of
kinship.

Because deviations of the genetic structure of the ini-
tial population from Hardy-Weinberg-proportions are the
rule rather than the exception, equations (11) tell us that
it is necessaryto specify ft as well as a, ifwe are aim-
ing at a representation of the expected genetic structure
in generation t which does not explicitly involve the ini-
tial structure.

From these findings it becomes evident once more
that the interrelation between the coefficient of inbreed-
ing and the expected genetic structure depends on the
system of mating. This aspect gains particular signifi-
cance when referredto what we called the initial popula-
tion, because its members could already have been re-
lated and inbredto a certain degree, which thus would not
agree with our initial condition fo =0y = 0. But this
seeming contradiction can be solved if we proceed from
the concept that we exclusively intend to determine this
part of the amount of genetic relationship and inbreeding
which is generated by the system of mating employed,
and that we furthermore represent all the preceding in-
fluences of inbreeding by the genetic structure of the ini-
tial population. This concept is indispensable if we con-
sider - as pointed out above - that the system of inbreed-
ing practised to obtain the initial population might de-
termine its genetic structure in an entirely different
way than does the system starting from this population.

For completeness it should be emphasized that the
concept of effective population size - in this case the in-
breeding effective population size (for definition see e.g.
Kimura and Ohta, 1971) - generally can not be appliedto
our results, since for monoecious individuals it refers
exclusively to the special cases Et = 0 and Mt = at-l
for all t. On the other hand, if we consider that in the
ideal case, in which all individuals contribute equally
to the offspring generation, i.e.

N

1 .
S =N Ik = D Zp(kh) =1 forall k=1,...,N,
i=1
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we obtain M = I%I , it is reasonable to extend the conven-
tional concept by defining the effective population size
t . . t 1

in generation t as N_ =

N .
e e My

Finally, we shall briefly treat a generalization of the

previous findings which, for example applies to-cer-
tain forestry tree breeding programs connected with the
establishment of seed orchards. It is assumed that each
plant is propagated vegetatively by a certain number
(called a clone) which does not depend on its genotype.
Within the scope of our model, this means that each in-
dividual can be identically reproduced several times,
and that, because of this, all those quantities which re-
ferred to the probability that two alleles are derived
from the same individual now have to be conceived as
probabilities that two alleles are derived from the same
clone. If C " denotes the probability that two distinct in-
dividuals in generation t belong tothe same clone, then

within all the preceding formulae
q, has to be substituted by Et' = Et + (1—?1'1;)Ct and

M, has to be substituted by M{=M, + (1—Mt)C

t-1°
In particular, if in generation t all Lt clones have
equal size Kt’ and therefore the population size is equal

to N, = K

¢ L Lt’ we obtain

K, -1
C, = = .
t = N1

The variance of the allele-frequency. Probability theory

offers several possibilities to describe the implications
of random sampling. Probably the most commonly used
concept for recording these effects is that of the va-
riance. To complete the preceding considerations of the
expected genetic structure by taking into account the
accidents of sampling, the variance of the allele-fre-
quency for each allele Ai is computed.

With reference to the notation in case A), we now

Ilt
4

t. Using these quantities, which have to be regarded as

define pi't, and Pl“]t as pi' s p‘i‘ and Pi'j in generation

random variables, we are able to write the variance of

the frequency of allele Ai in generation t as

vle) = {(w))- o )
B (( (o) 1oy ) )

applying the standard notation for the expectation and the
conditional expectation of random variables.

From a result obtained by one of the authors (Grego-
rius 1975a, equ.(2)), it can be derived, that
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= oy le Ry -

Furthermore, from the statements of case B) we conclude
-1y .t—1) _ ot (( ,t—1)2) _nt
B(p; ) = by E(Pii = P}, and E((p, =R', .

Thus

by o1 t 1 \pt 2
V(pi' ) =N, (pi +Pii) + (1 N, )Rn Py

(14)

which relates the variance within a given generation to
its expected genetic structure.

Because the expected genetic structure in genera-
tion t does not depend on the population size Nt of
this generation, the above equation tells us that for

Nt - ‘oC we obtain p‘i't - pi't with probability one and

thus V( p'i‘t) -V ( pi't_l) = Rti:i - piz, which is the va-
riance of the expected frequency of allele Ai within the
progeny derived from generation t-1 (compare case
A). It is now possible to restate equation (14) to depict
this part of the total variance which is due to random

sampling of individuals within one generation:

mby 1Lt 1 t t it-1
Vip) = w [ (x; +Ph) - Ry; ] s (14a)

It must be emphasized that N, refers to the number

of individuals resulting from ran::iom sampling, and so
does the allele-frequency p'i't. Therefore, if only Lt out
of the total of Nt individuals are selected at random,
while the remainder is obtained from these Lt plants
by vegetative propagation performed with no regard to
genotypes, then N, in equations (14) and (14a) has to
be replaced by Lt’ and pi't describes the corresponding
allele-frequency for those Lt plants. On the other hand,
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p; and consequently V P; are not affected by

these considerations, since all the necessary informa-

tion is already contained in Rtﬁ .

2. Applications
2.1. The genetic structure of the progeny derived from

an explicitly described parental population (see case A)

As already mentioned in chapter 1, the formulae were
developed for the special cases where exact knowledge
about the actual parental genetic structure is available
and a direct determination of possible deviations between
their structure and that of the progeny is needed. This
may be important, for example, if among the clones in
a seed orchard a few outstanding genotypes are identi-
fied, which should be obtained with the same expected
frequency within the seed population. For such an expli-
cit case the result can be obtained quite easily by using
equations (2).

Accepting random cross-fertilization and the special
assumptions Sy = %I and 9 = D that is, each tree par-
ticipates in seed production to the same extent and is
characterized by the same average amount of self-ferti-
lization, the genetic structure of the progeny depends
only on the parental allelic and genotypic frequency (pi",
P! resp. Pi,j)’ the rate of self-fertilization (q) and the
number of clones (L, where L = N, if each clone is re-
presented by one individual ). Of the variety of actual
situations, only a few examples within the two-allele-
concept will be presented: for instance the influence of
q on the Pi'i and Pi'j. As a measurement of differences
between the obtained genetic structures and the corres-
ponding Hardy-Weinberg-proportions for the parental and
the seed population, the respective genetic distances 4"

and d' were calculated according to equation (3).

Table 1. The genetic structure of the parental (P|'y) and resulting seed (P{;) population and the
respective genetic distance (d", d') to the corresponding Hardy-Weinberg-proportions for dif-
ferent rates of self-fertilization (q) and population-size N = 20

— 1) tt Tt n 1" mn ] t ] 1
! L=N pj pp Pli FPiz P d P11 Pi Pa2 d
.0 20 .50 .50 .25 .50 .25 .0000 .243 .513 . 243 .0135
1/N .250  .500 . 250 .0000
.3 .283  .434 .283 .0660
.8 .338  .324 .338 .1760
.0 20 .15 .85 .10 .10 .80 .1550 .017 .266 .717 .0110
1/N .023  .255 .723 .0000
.3 .050 .201 .750 .0545
.8 .095  .110 .795 .1618
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Inthe firat case we assumedthe parental populationto
be inHardy-Weinberg-proportions, in the second case we
considered a deviation from this situation. The data con-
firm that in both cases the corresponding Hardy-Wein-
berg-proportions are attainedinthe progeny only in the
case of complete panmixa (q = 1/N). Any change of g
from 1/N towards 0, as well as towards 1, causes in-
creasing genetic distances d'. Comparing the values of
d' and 4", it is obvious that a deviation of the parental
population from corresponding Hardy-Weinberg-propor-
tions d'" can, with an increasing rate of self-fertiliza-
tion, be exceeded by the respective deviation of the seed
population d'.

An increase in the number of trees per clone in the
parental population will not change the genetic structure

of the progeny.

2.2. The expected genetic structures (see case B)

If no exact determination of the parental genetic struc-
ture is available, the probability distribution of this
structure has to be considered and calculations will be
performed for several successive generations as de-
scribed in case B.

This will be done in 4 steps:

a) description of the influence of the pollen distri-
bution which is contained in the parameter M,

b) calculation of the coefficients of inbreeding and
the parameters P

c) determination of some expected genetic structures
corresponding to b),

d) description of the variance of the allele-frequency.

a) Description and determination of M. The parameter M

(as defined in chapter 1.2) determines the values of the
coefficients of inbreeding and kinship as well as those of
the genetic structure (see (10), (13), (4) and (8)). M
is important because it is the only parameter which re-
flects the influence ofthe pollendispersal, the individual
rates of self-fertilization and the actual population-size
on the expected genetic structures. As already demon-
strated, for a clear interpretation of M, it is useful to
conceive it as the reciprocal value of the effective popu-
- Therefore, instead of the
M's, the Ne ‘s are listed in the table below.
To direct attentionto the role played by pollen disper-

lation size N , i.e. N =—1—
e e

sal, it is convenient to assume no variation in the rates

of self-fertilization (i.e. qy =q for all k) or in the indi-

vidual seed and pollen production (i.e. s, = % for all k,

k
where N = population size). As no exact data for pollen
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dispersal within seed orchards are available, we accept
an exponential distribution, in accordance with published
results which refer to pollen dispersal of individual trees
in stands (Bateman 1947, Schmidt 1970, Miiller 1974).
Proceeding from an exponential pollen distribution, the
mating probabilities p(k|i) within M are obtained with
the help of Bayes's theorem, which here attains the

representation
S5 .
exp(—— . |k-1|>
p(k]1) = ar
Zexp(——D . 1—j])
1
i

where Ik-il is the distance between places k and i, and
D describes the range of pollen distribution for individual
trees. This range is defined as the distance within which
96% of the emitted pollen sediments. The individuals of
the seed orchard are supposed to be arranged according
to a simple square grid, the dimensions of which will be
varied. Ne is calculated for D = 20, 50, 100 meters,

N = 400 (20 x 20, 40 x 10), 100 (10 x 10, 20 x 5), 25
(5% 5) trees, g = 0 and q = 0.3. The grid-distance is
consideredto be constant for all cases, namely 7 metres.

The information contained in the following table is
easier to survey if it is kept in mind that the effective
population size Ne is equal to the actual population size
N, if all parents contribute equally to the progeny as
mentioned in chapter 1.2. This situation may be real-
izedindifferent ways, one of which is that of random-
cross-fertilization.

Table 2 demonstrates that the deviations between
N and Ne are surprisingly small in all cases, so that
the range of pollen dispersal is less effective than might
have been expected.

The percentage deviations between N and Ne decrease
with increasing rates of self-fertilization, a fact which
confirms that a reduction in cross-fertilization suppres-
ses the influence of pollen dispersal.

Considering that we assumedno variation inthe rates
of self-fertilization, pollen- and seed-production and
pollen-dispersal of the individual trees, the deviations
obtained can be explained exclusively as marginal ef-
fects. As seen from the table, it is not possible to in-
terpret the effect of D, N and type of arrangement onthe
deviations independently of one another. An illustration
of the kind of dependence between these variables would
require more sophisticated investigations, which are

beyond the scope of this paper.
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Table 2. Values of the effective population-size N, and percentage deviations of N, from the
population-size N for different N's, ranges of pollen-dispersal (D) and rates of self-fertili-

zation (q)
N = 400 N = 100 N =25
20%20 9% 40x10 %  10x10 9% 20x5 % 5x5 %
q=0 399.20 .20 398.88 .28 99.54 .46 99.39 .61 24.72 1.12
D=2 g=0.3 399.52 .12 399.52 .12 99.77 .23 98.70 .30 24.86 .56
q=0 398.88 .28 398.41 .40 99.35 .65 99,48 .52 24.79 .84
P= 50C[=0.3 399.36 .16 399.20 .20 99.68 .32 99.75 .25 24.89 .44
q-= 397.93 .52 398.25 .44 99.34 .66 99.63 .37 24.91 .36
D =100 q=0.3 398.04 .24 399.20 .20 99.68 .32 99.82 .18 24.96 .16

As a consequence of the extremely small deviations
obtained between Ne and N, the subsequent calculations
of ft’ a, and P:i will be based on the assumption of

random cross-fertilization, that is Ne = N or equiva-

lently M = ﬁ-

b) Caculation of the coefficients of inbreeding ft and the

parameters a, . To calculate the coefficients of inbreed-
ing ft for generation t with the help of the derived re-
currence relation (10), it is necessary to specify, be-
sides the parameters M and q, the coefficients of kin-
ship P, in generation t. On the other hand, having in
mind a description of the expected genetic structure,
which can be represented as a function of the coefficient

of inbreeding and the parameter a,_ only (see (11)), we

t
confine our calculations to these quantities.

Calculations»ofthe ft's will be performed for the same
cases as before and in addition the number of clones L
will be reduced by a factor % = 5. Thelatter referstothe
fact that in seed orchard lay-outs each clone is repre-
sented by more than one individual. The reduction of the
number of clones induces an apparent q and M, denoted
as q' and M', respectively, which both exceed the cor-
responding actual values, according to the formulae
given at the end of chapter 1.2, case B). Each figure is
complemented by a table of corresponding parameters
a, which measure the reduction of the contribution from
the deviation within the initial population between the
actual and the corresponding Hardy-Weinberg-structure

for éach geéneration. Both parameters ft and a_ are in-

t
dependent of any assumption concerning the genetic struc-
ture of the initial population, so that they reflect purely

the influence of the mating system. Although a discon-

tinuous representation would be correct, for clarity we
decided in favour of a continuous one.

The fact that the effective population size Ne com-
prisesthe influences of N as well as Lallows simplifica-
tion of the interpretation of the above figures as follows.
For any given rate of self-fertilization (actual or appa-
rent), decreasing values of Ne cause a considerablein-
crease inthe increments per generation. To prevent pos~
sible misunderstandings it should be pointed out that the
values of g given in the figures in all cases are the ac-
tual rates of self-fertilization.

For any given effective population size (actual or ap-
parent), changing values for q cause marked differen-
ces in increments only for the first generation, while for
the following generations the increments per generation
become very similar.

The special influence of the number of clones on the
coefficients of inbreeding can be taken from the figures,
when for any given N and actual g the two different val-
ues of L are considered. In all cases the ft for this pair
of L's are diverging for the first ten generations, a ten-
dency which is pronounced with decreasing N.

Because ofthe initial conditions fo =0, = 0 and a -~ 1,

b0 = 0, the values for a_, always coincide with those for

1

-t =1 =f, =Lq
1-f1—2qanda1_f1-2q,astaken

from (10) and (13) . The respective tables show that con-

fl’ namely a

siderable influences of the values of a, on the expected
genetic structure are obtained for the first generation
only. For all successive generations these influences
are negligible.

c) Calculations of the expected genetic structures. Be-

cause of the simple functional relationship between the
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Fig.1-3. The coefficients of inbreeding f, in generation
t as a function of t. g = rate of self-fertilization; N =
population size, L = number of clones; N as well as

L are assumed to be the same for all generations. All
clones are considered to have the same size K, such
that N=K + L
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Table 3.
N = 400
L =400 L =80
t q =.0 p=.3 q=.0 q=.3
1 .00000 . 15000 .00501 .15351
2 .00125 .02337 .00621 .02790
3 .00125 .00451 .00617 .00822
10 .00123 .00120 .00591 .00568
Table 4.
N = 100
L = 100 L =20
t q=.0 q=.3 qg=.0 q=.3
1 .00000 .15000 .02020 .16414
2 .00500 .02600 .02440 .04374
3 .00495 .00789 .02377 .02589
10 .00478 .00461 .01993 .01871
Table 5.
N =25
L =25 L=35
t q=.0 q=.3 q=.0 = .3
1 .00000 . 15000 .08333 .20833
2 .02000 .03650 .09028 .10174
3 .01920 .02102 .08113 .08001
10 .01672 .01589 .03936 .033862

Table 3-5. Values of a; (for definition see text) for a
given population size (N), different number of clones
(L), rates of self-fertilization (q) and generations (t)

coefficient of inbreeding and the expected genetic struc-
ture (see (11)), we restrict representations to one of
the examplestreated in the preceding chapter (figure 3).
As a representation of the single genotypic frequencies
(Pgi, ng) does not provide moreleffective information
than is contained in the total amount of the homozygotes,
we decided to use the frequency of the homozygotes

Ht = Z Pﬁi only. Furthermore, the fact that deviations
i

from Hardy-Weinberg-proportions within the initial po-
pulation can easily be taken into account with the help
of the quantities a, suggests that the investigations can
be based on a Hardy-Weinberg-structure, which in our
case shall be realized by the presence of two alleles
with equal frequencies.

Figure 4 proves that the tendencies of the coefficient

of inbreeding for the corresponding case presented in
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Fig.4. The proportion of homozygotes H: in generation
t as a function of t, using for the initial population a
Hardy-Weinberg-structure realized for two alleles A4,
A,, with equal frequencies. For definition of q, N, L
see figures 1,2,3

figure 3 are directly transferred to Ht’ Of course all
the curves have to start at the frequency of the homo-

zygotes assumed for the initial generation.

d) Calculations of the standard-deviation of the allele-

frequency. To enable investigations to continue based
on the preceding findings, the following calculations will
be performed under the same assumptions chosen for
obtaining the results stated in figure 4.

The interpretation of the following representation will
be facilitated if we recall that the standard-deviation of
the allele-frequency is a suitable measure for the risk
of losing an allele because of accidents in sampling in-
dividuals in the course of generations. Thus the allele-

frequency p and consequently its standard-deviation,

has to be reflerred to the number of clones L.

Because of the evidence of the results, it shall suf-
fice to point out that major changes in the standard-devi-
ation are caused by the number of clones L, where de-
creasing values of L imply an increase in the standard-

deviation.
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Fig.5. The standard deviation V(p}*)¥ of the allele-
frequency p4' in generation t as a function of t. Re-
maining notations as well as assumptions about the ge-
netic structure of the initial population coincide with
figure 4
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